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Abstract

A model of epidemic dispersal (based on the assumption that susceptible cattle were

homogeneously mixed over space, or non-spatial model) was compared to a partially spa-

tially explicit and discrete model (the spatial model), which was composed of differential

equations and used geo-coded data (Euclidean distances between county centroids). While

the spatial model accounted for intra-county and inter-county epidemic spread, the non-

spatial model did not assess regional differences. A geo-coded dataset that resembled

conditions favouring homogeneous mixing assumptions (based on the 2001 Uruguayan

foot-and-mouth disease epidemic), was used for testing.

Significant differences between models were observed in the average transmission rate

between farms, both before and after a control policy (animal movement ban) was im-

posed. They also differed in terms of daily number of infected farms: the non-spatial

model revealed a single epidemic peak (at, approximately, 25 epidemic days); while the

spatial model revealed two epidemic peaks (at, approximately, 12 and 28 days, respec-

tively). While the spatial model fitted well with the observed cumulative number of

infected farms, the non-spatial model did not (P < 0.01). In addition, the spatial model:

a) indicated an early intra-county reproductive number R of ∼ 87 (falling to < 1 within 25

days), and an inter-county R < 1; and b) predicted that, if animal movement restrictions

had begun 3 days before/after the estimated initiation of such policy, cases would have

decreased/increased by 23 or 26%, respectively.

Spatial factors (such as inter-farm distance and coverage of vaccination campaigns,

absent in non-spatial models) may explain why partially explicit spatial models describe

epidemic spread more accurately than non-spatial models even at early epidemic phases.

Integration of geo-coded data into mathematical models is recommended.
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1 Introduction

Foot-and-mouth disease (FMD) is a highly infectious illness caused by an aphthovirus that af-

fects cloven-hoofed animals such as pigs, cattle, and sheep (Alexandersen et al., 2003; Kitching

et al., 2005). The likelihood that FMD will start an epidemic outbreak depends on various

factors that include the susceptibility of the livestock, the potential mode(s) of transmission,

and the effectiveness of intervention efforts. Control efforts have been based, since 1911, on the

concept of the basic reproductive number, introduced by Sir Ronald Ross (1911) and Kermack

and McKendrick (1927). The basic reproductive number (or R0) is defined as the number of

secondary cases generated by a primary case when the virus is introduced in a population of

fully susceptible individuals at a demographic steady state (Diekmann and Heesterbeek, 2000).

That is, R0 measures the power of a disease to invade a population under conditions that facil-

itate maximal growth. Once an outbreak starts, the number of susceptible livestock decreases

either through loss of susceptibles (i.e., they get infected) or from the implementation of con-

trol measures such as slaughter or vaccination. When R0 > 1, the epidemic progresses. When

R0 < 1, the epidemic dies out. The higher the R0, the faster the infecting agent runs out of

susceptible individuals (i.e., the faster it decreases).

However, the valid measurement of R0 is problematic. To do so, models should assess the ac-

tual transmission mechanisms (causes that induce effects, that is, deterministic models), which

would require data that: a) are likely to be unknown or biased (i.e., delayed case reporting and
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under-reporting), and b) are likely to vary over space and even time (i.e., roads, farms, animal

density, animal and human movement) (Rivas et al., 2004). Yet, simple deterministic models

have been regarded to yield useful insights, generate intriguing hypotheses, and guide future

research (Anderson and May, 1991). Elaborate deterministic models have been used to guide

epidemic control policy (Ferguson et al., 2001).

One major assumption of deterministic models is that, in the early phase of an epidemic

(especially when the disease is exotic and, therefore, all animals are susceptible; and when the

replication cycle of the infecting agent is brief), the transmission is so rapid that, for practical

purposes, the scenario where the epidemic develops may be regarded as “space-less”: under

those conditions, susceptible individuals may be regarded to be homogeneously mixed and in

close contact (Keeling, 1999). The homogeneous mixing assumption characterizes non-spatial

models (Koopman, 2004). That assumption leads to consider all infected cases as identical

and, therefore, control policies based on the homogeneous mixing model tend to apply the

same intervention in the same fashion (i.e., buffer zones of equal diameter, within which the

same policy is applied, such as ring vaccinations) (Müller et al., 2000).

To assess the validity of homogeneously mixing-based, non-spatial models, at least two fac-

tors are needed: a) a spatially explicit model to be compared to, and b) geo-coded and temporal

epidemic data. One approximation to provide a (partially) spatially explicit alternative model

is to investigate R0 while using spatial (local) data that consider the centroid-to-centroid dis-

tances among all county pairs where an epidemic takes place (Glavanakov et al., 2001). In

addition, a geo-referenced and temporal dataset where an exotic infecting agent characterized

by a short replication cycle infects a population lacking immunity (such as FMD affecting cat-
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tle) is needed. At its earliest epidemic phase, that scenario would resemble a homogeneously

mixed scenario (Rivas et al., 2003a).

Consequently, this study explored the validity of a non-spatial model in relation to a spatial

model that estimated the local and regional disease transmission. For that purpose, a geo-

referenced dataset based on the 2001 Uruguayan FMD epidemic was used.

2 Methods

2.1 Georeferenced and temporal epidemic data

Data from the FMD epidemic that took place in Uruguay in 2001 were obtained from public

sources (MGAP, 2001; PAHO, 2001; European Commission DG [SANCO] reports # 3342/2001

and 3446/2001). The index case of this epidemic was reported on April 23, 2001 (epidemic day

1). Over 79 consecutive days, 1763 cases (infected farms) were reported (Figure 1). Details on

this epidemic have been reported elsewhere (Rivas et al, 2003a, 2003b, 2004). A data-based

simulation of the 2001 FMD epidemic in Uruguay is given in the supplementary materials.

Inter-centroid county distances among all Region’s I county pairs (n = 861) were generated

by Geographical Information Systems (GIS) software by retrieving first and linking later the

polygon’s centroid value of every county (n = 42).

5



2.2 Spatial epidemic model

The number of secondary outbreaks generated by a primary outbreak during its entire pe-

riod of infectiousness was classified as internal (within counties) and external (across counties).

Parameter values were estimated from data using least-squares fitting techniques. Parameter

uncertainty was assessed using the stochastic temporal dependence of the cumulative number

of outbreaks. Standard deviations for the estimated parameters were also calculated.

The epidemiological unit of analysis was the number of infected farms per county (Table 1).

Farms were classified as susceptible (S), latent (L), infectious and undetected (I), and detected

and isolated (J). A susceptible farm in county i (in contact with the virus) was regarded to enter

the latent (uninfectious and asymptomatic) class (L) at the rate
∑n

j=1 βijIj. In other words,

the rate of infection was assumed to be proportional to the sum of the weighted prevalences

of infected farms from all counties j. Hence, the transmission parameters βij measured the

impact on county i from direct and indirect “contacts” between i−county and the j−county.

These “contacts” may be the result of animal relocation or movement, from the sharing of milk

routes (drivers as “mechanical” vectors or carriers), shared veterinarians or overlapping visitors

(buyers, salesmen of farm products, etc. Sellers et al., 1971). Far away farms were assumed

to be less likely to share the same veterinarians, milk trucks or visitors. It was assumed that

the rate of transmission βij between farms in counties i and j decayed exponentially fast with

the Euclidean distance of their respective county centroids. The elements of the “mixing” or

“contact” matrix βij (Anderson and May, 1991) were therefore expressed as:
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βij = β(t) e−qdi,j , (1)

where β(t) denotes the average transmission rate of infectious farms within each county at time

t, dij is the distance between the centroids of counties i and j (Figure 1d), and the parameter

q (1/km) which quantifies the extent of average local spread (1/q can also be interpreted as

the FMD mean transmission range). Small values of q lead to widespread influence, whereas

large values of q support the hypothesis that local spread is the key. For simplicity, uniform

mixing within each county was assumed, that is, dii = 0. It was also assumed that latently

infected farms “progressed” towards the infectious class after a mean time of 1/k days and that

infectious farms were detected and isolated from other farms at the per-capita rate α. That is,

α is the average time required to detect and isolate an infected farm.

The above definitions and assumptions led to the following FMD model:











































Ṡi = −Si

∑n

j=1 βijIj

L̇i = Si

∑n

j=1 βijIj − kLi

İi = kLi − αIi

J̇i = αIi.

(2)

The dot denotes time derivatives while Si, Li, Ii, and Ji denote the number of susceptible, latent,

infectious, and isolated farms in county i (i = 1, 2, ..., n). The distribution of the number of

farms per county is given in Table 1. The above system falls within the class of metapopulation

models that have been used extensively to study ecological processes in heterogeneous patchy

environments. In fact, the spatially dependent transmission rates {βij} correspond to the
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metapopulation patch connectivity index (Hanski, 1998) once we re-interpret dij as a measure

of the influence of the landscape on migration (Moilane and Hanski, 1998). The elements of

{dij} here were set as “indices” that captured the effects of local transmission factors such

as wind direction and animal heterogeneity within farms (dairy, beef, etc.). Here, the county

connectivity dij was approximated by the distance between counties. The incorporation of a

few time-dependent control/interventions measures led to the following modified model (see

compartment diagram in Figure 2a) :










































































Ṡi = −Si(t)
∑n

j=1 βij(t)Ij(t) − ν(t)Si(t)

V̇i = ν(t)Si(t) − Vi(t)
∑n

j=1 βij(t)Ij(t) − µ(t)Vi(t)

L̇i = (Si(t) + Vi(t))
∑n

j=1 βij(t)Ij(t) − k(t)Li(t)

İi = k(t)Li(t) − α(t)Ii(t)

J̇i = α(t)Ii(t)

Ṗi = µ(t)Vi(t)

(3)

where the classes Si, Li, Ii and Ji were defined as before. Susceptible farms in county i (Si)

are vaccinated at rate ν (Vi); vaccinated farms in Vi enter the protected class Pi at rate µ;

vaccinated farms in county i that have not yet reached protective levels (class P ) enter the

latent (uninfectious and asymptomatic) class (L) at the rate
∑n

j=1 βijIj. The total cumulative

number of reported infected farms as a function of time is given by C(t) =
∑n

i=1 Ji(t) while the

daily number of new reported infected farms is given by ˙C(t), that is by α(t)
∑n

i=1 Ii(t).

The dependence of parameters β(t), α(t), ν(t), and µ(t) on time allow for the possibility of

implementing control measures at different times (Chowell et al., 2004). For simplicity, these

parameters were modelled as simple step functions
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β(t) =











β0 t < τm

β t ≥ τm

(4)

α(t) =











α0 t < τv

α t ≥ τv

(5)

ν(t) =











0 t < τv

ν t ≥ τv

(6)

µ(t) =











0 t < τv

µ t ≥ τv

(7)

where τm = 5 is the epidemic day when movement restrictions were put in place and τv = 13 is

the time when mass vaccination started.

2.3 The reproductive number

Because there was not sufficient data to estimate the basic reproductive number (R0), the in-

ternal reproductive number of county i, Rint
i was defined as the number of secondary outbreaks

generated by an outbreak in county i within the same county after t > 4, Rint
i = βNi/α where

Ni denoted the number of farms in county i and 1/α was the average time it took to iden-

tify infected farms. The external (across counties) reproductive number of county i, Rext
i , was

defined as the number of secondary outbreaks generated by an outbreak in county i in other

counties, where j = 1, 2, ..., n; j 6= i. Rext
i =

∑n

j 6=i βNj e−qdij/α, that is, it was given by the
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additive contributions of the number of secondary cases (after the first intervention) in county

i. Hence, the contributions were weighted by distance.

2.4 Spatially homogeneous model

In order to assess the role of spatial heterogeneity, a description of the corresponding spatially

homogeneous version (null-model) follows. We set the homogeneous mixing assumption, βij =

ˆβ(t) where

ˆβ(t) =











β̂0 t < τm

β̂ t ≥ τm

(8)

The corresponding system of nonlinear ordinary differential equations for the spatially homo-

geneous model becomes











































































Ṡ(t) = − ˆβ(t)S(t)I(t)/N − ν̂S

V̇ (t) = ν̂S − ˆβ(t)V (t)I(t)/N − µ̂V

L̇(t) = ˆβ(t)(S(t) + V (t))I(t)/N − k̂L(t)

İ(t) = k̂L(t) − α̂I(t)

J̇(t) = α̂I(t)

Ṗ (t) = µ̂V (t)

(9)

where S, V , L, I, J , and P denote the total number of susceptible, vaccinated, latent, infec-

tious, isolated, and protected farms, respectively. The parameters ˆα(t), ˆν(t), and ˆµ(t) depend

on time in the same manner as in the spatially explicit model.
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2.5 Parameter estimation

The intrinsic growth rate quantified epidemic growth between successive time periods. The

initial region-specific intrinsic growth rates ri (i =1,2,3) were estimated under the assumption

of exponential growth. That is, r (with units of 1/day) was estimated by assuming that the cu-

mulative number of reported farms was proportional to exp(rt), where t is time (days). Solving

for r, we obtained r = (ln(y(t)) − ln(y0))/t, where ln denotes natural logarithm and y0 is the

number of outbreaks reported the during the first reporting day. The intrinsic growth rate in

Region III was estimated using the cumulative number of outbreaks from May 02 to May 07,

2001. This window of time was chosen because of lack of cases prior to May 02 (Figure 2b).

The model parameters Θ =(β(t), k(t), α(t), q(t), ν(t), µ(t)) and the initial number of

exposed and infectious farms (E(0) and I(0)) were estimated from the cumulative number of

reported farms (ti, yi), where ti denotes the ith reporting time (79 reporting days) and yi is the

cumulative number of reported farms by least-squares fitting to C(t,Θ) (the cumulative num-

ber of reported farms for our ordinary differential equation (or ODE) model with interventions

(3) in Region I (where the epidemic started and the majority of outbreaks occurred). This

gives a system of 5 equations per county (42 counties in Region I, or 210 differential equations).

The farm density of each county is provided in Table 1. A language of technical computing

(MATLAB, The MathWorks, Inc.) was used to carry out the least-squares fitting procedure.

Initial conditions were chosen within the appropriate ranges (0 < β < 100, 1/5 < k < 1/3,

1/12 < α < 1/4, 0 < q < 10, 0 < ν < 10, 0 < µ < 10). Parameter optimization was carried

out using the Levenberg-Marquardt method with line-search (More, 1977). This method was
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implemented in MATLAB with the built-in routine lsqcurvefit.m. The cumulative number

of reported farms J(t) under a spatially homogeneous mixing ODE model (9) was fitted to data

using also the same procedure described above.

The asymptotic variance-covariance AV(Θ̂) of the least-squares estimate for the spatially

explicit model (3) was computed using a Brownian bridge error structure to model the stochastic

temporal dependence of the cumulative number of outbreaks. The explicit formula used is

AV(Θ̂) = σ2 B(Θ0) ∇ΘC(Θ0)
T

G ∇ΘC(Θ0) B(Θ0), (10)

where B(Θ0) = [∇ΘC(Θ0)
T ∇ΘC(Θ0)]

−1.

An estimate of AV(Θ̂) is

σ̂2 B̂(Θ̂) ∇ΘĈ(Θ̂)
T

G ∇ΘĈ(Θ̂) B̂(Θ̂), (11)

where B̂(Θ̂) = [∇ΘĈ(Θ̂)
T

∇ΘĈ(Θ̂)]−1, σ̂2 =
∑

(yi − C(ti, Θ̂))2/(I1xn G Inx1) and ∇ΘĈ

are numerical derivatives of C(Θ̂). The error structure (Davidian and Giltinan, 1995) was also

modelled by a Brownian bridge (G). Here G is an n x n matrix with entries Gi,j = (1/n)

min(i, j)− (ij)/n2 where n is the total number of observations. G captures the higher variabil-

ity in the cumulative number of outbreaks observed on the middle course of the epidemic as well

as the smaller variability observed at the beginning and the end of the epidemic. Confidence

intervals of 95% were computed using the asymptotic variance of our parameter estimates (di-

agonal elements of AV(Θ̂)). The asymptotic variance-covariance AV(Θ̂0) for the nonspatial

(homogeneous mixing) model can be similarly computed using J(t) in model (9) instead of C(t).
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The improvement in goodness of fit provided by the spatial model was compared to the

nonspatial model by the stepwise F test (Jacquez, 1996). In fact, if RSSspatial denotes the

residual sum of squares obtained from the spatial model, and RSSnonspatial is the corresponding

sum of squares from the non-spatial (homogeneous mixing) model, then

RSSspatial =
n=79
∑

i=1

(yi − C(ti, Θ̂))2 (12)

RSSnonspatial =
n=79
∑

i=1

(yi − J(ti, Θ̂0))
2 (13)

The F test is the ratio of the decrease in the residual sum of squares, divided by the decrease

in degrees of freedom (pspatial − pnonspatial), all divided by the mean residual sum of squares

obtained from the spatial model (RSSspatial/(n − pspatial)). That is,

(RSSnonspatial − RSSspatial)/(pspatial − pnonspatial)

(RSSspatial/(n − pspatial))
∼ F(pspatial−pnonspatial),(n−pspatial) (14)

where pspatial − pnonspatial = 1 (the spatial model has only one additional parameter (parameter

q) than the nonspatial model). When the above ratio is greater than the corresponding value

of the F distribution for the significance level chosen then we would conclude that the spatial

model significantly decreases the residual variance (Jacquez, 1996). Epidemic regions were

identified in terms of the proportion of cases by use of the χ2 test, conducted with statistical

software.
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3 Results

3.1 Regional epidemic growth rates

Three epidemic regions could be differentiated based on the percentage of all cases noticed in

each region (Table 1 and Figure 2b, c). By epidemic day 79, Region I displayed 57% of all cases,

while Regions II and III reported 32% and 11%, respectively (P < 0.05, χ2 test). The initial

intrinsic growth rates r shown in Regions I-III were 0.65, 0.35, and 0.19, respectively. After the

10th epidemic day, these growth rates decayed, becoming similar in all three regions (Figure

2b). Because Region I reported most cases throughout the epidemic and, consequently, it was

the region most likely to display an environment that would correspond to the homogeneous

mixing model, it was chosen for further analyses.

3.2 Model selection

When the non-spatial epidemic model was fitted to the cumulative number of Region I’s infected

farms, a systematic deviation was noticed during the first 20 epidemic days between fitted and

observed epidemic data (Figure 3a). In contrast, when the cumulative number of Region I’s

infected farms was fitted using the spatial model, a close agreement was revealed (Figure 3b).

The spatial model fit differed statistically significantly from that of the non-spatial model

(P < 0.01, F -test). Additional differences between models were noticed when best-fit solutions

were compared to the observed daily number of infected farms. While the non-spatial model

indicated a single epidemic peak (taking place at, approximately, the 25th epidemic day),
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the spatial model showed two epidemic peaks, occurring at epidemic days 10th and 28th ,

respectively (Figure 3c, d).

3.3 Comparison between models in terms of estimated parameters

The parameter estimates calculated by these models indicated both significant differences and

similarities. The initial transmission rate was estimated by the non-spatial model to be β̂0 =

0.77 (S.D 0.04) in the first 4 epidemic days, while the spatial model estimated it as β0 = 0.33

(S.D. 0.13). After the fifth epidemic day (start of movement restrictions), the transmission

rate was estimated to be 0.49 (S.D. 0.08) and 0.10 (S.D. 0.03) by the non-spatial and spatial

models, respectively (Tables 2 and 3). Other parameters did not differ beween models. Because

the effects of control policy (vaccination) were regarded to occur at or after the epidemic peak,

vaccination-related parameters were not analysed.

3.4 Applications for evaluation of control policy

Both models were concordant in indicating a significant decrease in the average transmission

rate after a nation-wide animal movement ban was imposed on epidemic day 5. However, they

differed markedly in the magnitude of that reduction. The non-spatial model indicated a re-

duction of 36%, whereas the spatial model estimated a reduction of 70% (Tables 2 and 3).

The spatial model also predicted that, if animal movement restrictions had been imposed

3 days before (or after) the estimated date of initiation of such policy (epidemic day 5), the

total number of infected farms would have been reduced (or increased) by 23 or 26%, respec-

tively (Figure 4). The spatial model also allowed us to estimate the intra- and inter-county
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reproductive numbers, although it only included data reported since epidemic day 5 (after an-

imal movement restictions had been imposed). The average internal reproductive number for

Region I’s individual counties was ∼ 87, while the external (regional average) was ∼ 0.82. We

estimated that Region I’s internal reproductive number decreased to less than 1 by epidemic

day 25th .

4 Discussion

Because observational epidemiology is a discipline that does not facilitate the implementation

of controlled experimental designs, model evaluation is constrained to use simulated scenarios.

Data obtained from the 2001 Uruguayan FMD epidemic were retrospectively used to assess

and compare the models here described. However, case reporting of actual epidemics is likely

to include errors not limited to delayed reporting and under-reporting. Therefore, this study

should not be construed as an assessment of the epidemic that took place in Uruguay in 2001,

but as a model evaluation that used hypothetical (although realistic) geo-referenced and tem-

poral epidemic data. That is, this study should be considered within the frame of the data here

reported.

A contrast was noticed between early estimates of intra-county and inter-county R (87.20

and 0.82, respectively). At least the intra-county’s R estimate was likely to reflect the influence

of an assumption of the model, which was that all secondary (and later) cases derived only

from those reported in the first replication cycle (primary cases), which is equal to say that no

indirect transmission (i.e., through human movements or delivery routes, such as those of milk

trucks) could coexist, when in fact such transmission mode was not prevented. Therefore, the
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early estimates for intra-county transmission were probably over-estimated. However, within

25 epidemic days, the spatial model indicated a decrease of the intra-county R to < 1. It is

suggested that the use of two R’s may improve the analysis of epidemic dispersal by assessing

simultaneously two scales: a) the micro or local scale (the intra-county R), and b) the regional

scale (the inter-county R). If used together, these two scales might describe epidemic processes

into four major types: a) a high Rint and low Rext, b) a low Rint and high Rext, c) a low Rint

and low Rext, and d) a high Rint and high Rext types. A high Rint and low Rext, type, as

seen here, indicates that the force of infection fades with distance, which ultimately suggests

that epidemic spread can only be sustained if the chances provided by long-distance connec-

tions coexist with favourable local conditions. Under such scenario, Rint must be very high for

epidemics to progress (Holmes, 1997). Because the simultaneous use of two R estimates such

as these has not been explored before, it was not possible to make comparisons to previously

reported R values.

While the history of this scenario included the implementation of a national vaccination

campaign (initiated on epidemic day 17th ), which was assumed to take place over two weeks

and require, at least, an additional week before antibody titers reached protective immunity

(European Commission DG (SANCO) report # 3342/2001; Doel, 2003), that intervention was

not a factor in the period prior to the epidemic peak (achieved before epidemic day 28, Fig

3c,d). Consequently, vaccination did not influence the only time frame within which condi-

tions could resemble homogeneous mixing (when R > 1, Anderson and May, 1991; Brauer and

Castillo-Chávez, 2001). Further potential sources of bias included the scale of the variables

(infected farms aggregated at county level). More precise estimates could have been obtained
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if geo-referenced data on all individual farms had been available (Rivas et al., 2004).

The parameter estimates generated by these models showed a good fit with previously re-

ported data. For example, Hugh-Jones and Wright (1970) reported a latent period of 3-6 days,

while 95% CI: 2.6-5.6 days was estimated here (Table 3). Keeling et al. (2001) and Ferguson

et al. (2001) estimated the infectious period at 8 days, in agreement with our (95% CI) 6.3-8.3

days estimate (Table 3).

In the scenario under analysis the spatial model revealed a better fit than the non-spatial

model. For example, a statistically significant difference was found between models in relation

to their fit with observed (cumulative) number of infected farms (Fig 3a,b). In addition, while

the non-spatial model only revealed a single epidemic peak, a double epidemic peak was indi-

cated by the spatial model.

While the double peak indicated by the spatial model seemed to contradict the expectation

for epidemic decline after epidemic day 10th (shown in Figure 2b) further supported by the

rapid decrease of Rint, that finding could probably be explained by the vaccination implemented

in Region I since or after epidemic day 17th and/or human movement (European Commission

DG (SANCO) report # 3342/2001). The movement of vaccinators and vehicles across farms

could have passively spread the virus among infected (but not clinical) cases and susceptible

animals, resulting in a second, although brief, epidemic peak.

Because of the better fit displayed by the spatial model than the non-spatial model in rela-

tion to observed data, it is concluded that in the scenario under analysis (where conditions very

closely resembled those based on homogeneous mixing), non-spatial models seem, nevertheless,

inappropriate to accurately describe epidemic dispersal. Mathematically, this can be expressed
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as differences due to non-random/non-uniform data distributions, which is equal to say that

spatial autocorrelation (although not investigated in this study) most likely occurred in this

dataset (Moran, 1950).

Likely reasons that may explain why non-spatial models are inappropriate to plan or monitor

interventions (i. e., vaccinations) relate to factors such as the farm spatial network, interven-

tion spatial coverage, and the percentage of animals and time required to synthesize specific

antibody titers with protective levels (Figure 5). Two opposing forces determine the result of

post-intervention outcomes. The outbreak is composed of factors related to the virus (including

the virus incubation period and the virus infectivity period) and factors related to the spatial

farm contact network. These factors can promote or prevent epidemic dispersal. The interven-

tion can be viewed as a spectrum that ranges between two poles: a) vaccine efficacy, and b)

vaccination impact. Vaccine efficacy is composed of vaccine homology, vaccine production safety

and vaccine potency testing. In addition, the intervention may be influenced by: a) the spa-

tial coverage (including the proportion of vaccinated farms or vaccination inter-herd coverage,

and the proportion of vaccinated animals or intra-herd coverage), b) the proportion of animals

exposed to susceptible (non-vaccinated) animals, c) the initial immune response (proportion of

vaccinated animals that develop antibodies), d) animals age, and e) antibody titer decay. All

these factors possess spatial expressions, which need to be accounted. The net efficacy of a

vaccination campaign (vaccination impact) is a fraction of the original vaccine efficacy. Vac-

cination programs require not only to achieve certain global percentage of vaccinated animals

(coverage) but also ensure that such level is evenly achieved, since pockets of unvaccinated

animals within vaccinated farms may allow the virus to re-invade (Keeling, 1999). Yet, we
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have failed to find literature reporting data on the spatial distribution of vaccination coverage.

Similarly, spatial and temporal data on the percentage of animals reaching protective immunity

is not available in the FMD-related literature. Antibody titers may decrease 7% or more after

4-6 weeks post-vaccination (Armstrong and Mathew, 2001; Woolhouse et al., 1996). Antibody

titer decay is also influenced by the age of the host (Woolhouse et al., 1997). Therefore, both

epidemic dispersal and intervention outcomes may be influenced by factors that are distributed

over space in a non-random/non-uniform fashion. Absence of such data might explain the poor

fit shown by the non-spatial model.

5 Conclusions

These analyses suggest that spatially explicit models are more likely to reflect local epidemic

processes than non-spatial ones, even at early phases of epidemic dispersal. The integration

of geo-referenced data at the lowest possible scale (i.e., farm-level data, as opposed to county-

aggregated data) and mathematical models is recommended.
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Table 1: Distribution of farm density and outbreaks of the 2001 foot-and-mouth disease epidemic in Uruguay over 79

epidemic days.

Region I Region II Region III

State Counties Nj Inf. Tot. State Counties Nj Inf. Tot. State Counties Nj Inf. Tot.

Soriano 12 140 463 1682 Paysandu 13 121 64 1567 Artigas 12 118 34 1421

Colonia 18 151 362 2724 Salto 16 111 56 1783 Rivera 10 206 14 2064

Rio Negro 12 77 178 925 S. Jose 10 243 68 2430 C. Largo 16 196 26 2744

Flores 9 91 62 816 Lavalleja 14 235 15 3296

Florida 16 152 109 2436 Rocha 12 190 12 2284

Tacuarembo 16 152 111 2427 T. y Tres 11 163 59 1797

Durazno 15 136 92 2043 Maldonado 13 136 12 1773

Canelones 23 141 25 3800

Counties, number of counties per state; Nj, mean number of farms per county; Inf., number of outbreaks per state; Tot.,

total number of farms per state.
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Table 2: Parameter definitions and estimates obtained from least-squares fitting of nonspatial

epidemic model (9) to the cumulative number of infected farms over time (days) in Region I

(Figure 3a). All the parameters have units 1/ days.

Params. Definition Estim. SD

β̂0 Average transmission rate between farms before mov. restrictions 0.77 0.04

β̂ Average transmission rate between farms after mov. restrictions 0.49 0.08

α̂0 Rate of detection of infected farms before mov. restrictions 0.16 0.07

α̂ Rate of detection of infected farms after mov. restrictions 0.14 0.02

k̂ Rate of progression from latent to infectious state 0.26 0.07

ν̂ Vaccination rate of susceptible farms 0.16 0.04

µ̂ Rate at which vaccinated farms achieve protective levels 0.31 0.05
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Table 3: Parameter definitions and estimates obtained from least-squares fitting of spatial

epidemic model (3) to the cumulative number of infected farms (Figure 3b) in Region I. All

the parameters have units 1/ days except for q whose units are 1/Km. ∗ Small values of q lead

to widespread influence, while large values support local spread. Great mobility and frequent

interactions among farms would lead to small values of q.

Params. Definition Estim. SD

β0 Average transmission rate within counties before mov. restrictions 0.33 0.13

β Average transmission rate within counties after mov. restrictions 0.10 0.03

α0 Rate of detection of infected farms before mov. restrictions 0.14 0.02

α Rate of detection of infected farms after mov. restrictions 0.14 0.02

k Rate of progression from latent to infectious state 0.28 0.05

q∗ Positive constant quantifying the extent of local spread 1.03 0.10

ν Vaccination rate of susceptible farms 0.25 0.09

µ Rate at which vaccinated farms achieve protective levels 0.14 0.03
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Figure captions

Figure 1:

(a) Daily and (b) cumulative number of farms reported as infected during the 2001 Foot and

Mouth Disease epidemic in Uruguay. The epidemic reached its maximum of 66 outbreaks on

day 33 (25 May 2001). By day 79 (10 July 2001) 1762 outbreaks had been reported. Data

were obtained from public records of the Uruguayan Ministry of Livestock, Agriculture, and

Fisheries (MGAP), the Pan-American Health Organization, and the World Organization for

Animal Health (OIE). The periodic dips in the data tended to coincide with weekends. (c) Map

of Uruguay with county divisions. (d) Distribution of intercounty (Euclidean) distances which

were obtained using a Geographic Information System (GIS) software. The centroid of each

county was used to compute Euclidean distances.

Figure 2:

(a) Schematic representation of the status progression for farms in a given county used to model

the epidemic, as explained in the text. (b) The initial intrinsic growth rate r for Region I, II

and III for the epidemic over 79 epidemic days. (c) Region I, II and III comprise 3, 7 and 8

Uruguayan states, respectively (see Table 1). The circle (Region I) denotes the site where the

index case was reported.

Figure 3:

The cumulative and daily number of farms reported as infected in Region I (Figure 2c), where

the epidemic started (23 April 2001) and most outbreaks occurred. Circles represent the ob-
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served data. The non-spatial model (9) fit is shown in (a) cumulative and (c) daily number of

farms reported as infected in Region I. The spatial model (3) fit is shown in (b) cumulative and

(d) daily number of reported outbreaks.

Figure 4:

(a) The daily and (b) cumulative number of farms reported as infected in Region I (Figure

2c), where the outbreak started (23 April 2001) and most outbreaks occurred. Circles are the

data, and the solid line is the best-fit solution of the spatial model equations (3) to the data

by least-squares fitting (parameter estimates are given in Table 3). Two scenarios are shown:

(dash-dash) movement restrictions with a 3-day delay and (dash-dot) 3 days before the actual

date on which movement restrictions started.

Figure 5:

Concepts influencing outbreak-intervention (vaccination) interactions.
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